

cuv’ner

“A commanding view of your test-coverage”.

The tool cuv provides console tools to show coverage data for you
Python project nicely in the console. It uses colour and unicode
characters.

cuv can:

	graph coverage of all files in your project;

	colour-ize individual source-code files (via less) by their coverage;

	colour-ize diff (or e.g. git diff master..HEAD) by coverage

	diff .coverage files themselves

	Cuv’ner
	Background + Terminology

	Notes on Tox

	Pro Tip(tm)

	Console Visualizations

Command Documentation

cuv graph

Usage: cuv graph [OPTIONS] [KEYWORD]...

Console graph of each file’s coverage.

	--help: Show this message and exit.

[image: console graph, showing txtorcon code]

cuv lessopen

Usage: cuv lessopen [OPTIONS] [INPUT_FILE]

Syntax + coverage highlighting in console.

Set ‘less’ up to use this via the LESSOPEN var:

 export LESSOPEN='| cuv lessopen %s'

or if you prefer:

 export LESSOPEN='| python -m cuv lessopen %s'

You may need to provide the full path to ‘cuv’. Now, whenever you‘less’ a file within a project that has coverage data, it will besyntax-highlighted and coloured according to coverage.

	--help: Show this message and exit.

[image: pygments + coverage coloring in console]

cuv diff

Usage: cuv diff [OPTIONS] [INPUT_FILE]

Color a diff by its coverage.

This prints out the whole diff as you would expect, but any added(“+”) lines in the diff get a red background if they are notcovered.

For example, to see if your local changes are covered in a Gitcheckout:

 git diff | cuv diff -

To see if your whole branch is covered:

 git diff master...HEAD | cuv diff -

	--help: Show this message and exit.

[image: showing "cuv diff" colouring]

cuv next

Usage: cuv next [OPTIONS]

Display the next uncovered chunk.

This finds the next file that has some uncovered lines and thenruns:

 cuv lessopen <filename> | less -p \u258c -j 4

	--ignore TEXT:

	-N, --line-numbers:

	--help: Show this message and exit.

[image: showing "cuv next" for above 'graph' screenshot]

cuv spark

Usage: cuv spark [OPTIONS] [KEYWORD]...

Single-line terminal graph of coverage.

	--sort / --no-sort:

	--help: Show this message and exit.

[image: spark-line coverage of txtorcon]

cuv readme

Usage: cuv readme [OPTIONS]

View the README

	--help: Show this message and exit.

Cuv’ner

“A commanding view of your test-coverage”

[image: ReadTheDocs]
 [https://cuvner.readthedocs.io/en/latest/]The command-line tool cuv provided by this package gives some
useful tools to visualize your project’s coverage data. This means you
must first run coverage [https://coverage.readthedocs.org/en/latest/] against your project’s test-suite.

Once you have a .coverage file, you can use the commands
documented below (or just type cuv to explore the help).

We utilize several quality open-source packages to achieve this:

	coverage [https://coverage.readthedocs.org/en/latest/] by Ned Batchelder

	Click [http://click.pocoo.org/] by Armin Ronacher / pocoo

	pygments [http://pygments.org/] by Georg Brandl / pocoo

	ansicolors [https://github.com/verigak/colors/] by Giorgos Verigakis

	unidiff [https://github.com/matiasb/python-unidiff] by Matias Bordese

	Source Code Pro [http://adobe-fonts.github.io/source-code-pro/]: the best programming font

Code: https://github.com/meejah/cuvner
Docs: https://cuvner.readthedocs.org

Background + Terminology

This started out as some experiments in “whole-project coverage
visualization”, and then also grew some console tools that I find
useful when working with Python code.

I have abandoned the pixel/graphical visualization ideas and
proofs-of-concepts into a branch and now this tool is just the
console visualizations – which are very useful when working on Python
code.

As far as my setup, I am using Debian with a 256-color and unicode
capable shell using Solarized Dark color schemes. There are probably
bugs with other setups, and to a reasonable extent I’m happy to accept
pull-reqeusts fixing these. That said, a unicode-capable shell is a
must.

Other Neat Visualizations

Other nice “coverage visualization” tools I’ve run across:

	of course, Coverage.py [http://coverage.readthedocs.org/en/latest/] itself comes with a
nice HTML visualization

	emacs-coverage [https://github.com/trezona-lecomte/coverage]

	codecov.io browser extension [https://github.com/codecov/browser-extension] shows coverage live
while browsing github

Notes on Tox

If you’re using tox [https://tox.readthedocs.org/en/latest/] to run tests (and you should, it’s great!) your
coverage files will – depending upon setup – end up in
.tox/envname/.coverage or similar. So, you will either need to use
--coverage to point cuv’ner at the right file, or simply move it to
the top-level of your project for ease-of-use.

Pro Tip(tm)

The “uncovered” lines start with a slightly different unicode
character than the “covered” lines, so if you’re trying to write tests
for uncovered things, you can do this on the “next file that has
uncovered things”:

cuv src/file.py | less -p ▌ -j 4

That says (since cuv lessopen is the “default” command) to run
cuv lessopen on src/file.py and then , in less, jump to the
first uncovered line and place it 4 lines below the top of the
screen. You can then hit n in less to go to the next one.

This is precisely what the cuv next command does.

Console Visualizations

The two main tools usable directly in the console are cuv graph
and cuv lessopen (which can be tied directly into less via the
LESSOPEN environment variable). For determining coverage of
branches or individual commits, use cuv diff. cuv spark can
provide a quick overview of a project’s coverage.

cuv graph

[image: console graph, showing txtorcon code]
This displays all the files in your project and a histogram-like graph
of their coverage. Each character represents 8 lines of code, and uses
a group of unicode characters (0x2580 through 0x2587) to draw a little
graph. So, if those 8 lines are not covered at all, the graph will be
all red; if they’re all covered, it will be all green. If 2 out of the
8 lines are covered, there will be about 25% green and the rest red.

The total size of each file can thus be easily seen (by the length of
the histogram part, which wraps to subsequent lines if needed) and an
idea of which parts are covered is given.

TODO:

	testing on more terminal types

	how does it look when using something besides Solarized Dark?

	useful, beyond eye-candy?

cuv lessopen

[image: pygments + coverage coloring in console]
This command is intended to be used via the LESSOPEN environment
variable, which lets you pre-process files that are opened with
less. So, once set up (see the help via cuv lessopen --help)
you can simply run less on any file in your project, and it will
get syntax-highlighted and show you the line-by-line coverage with a
leading green or red mini-verical bar and red background (for
uncovered lines).

A header appears at the top showing the total coverage for this
particular file.

TODO:

	probably the “proper” way to do this is via a Pygments [http://pygments.org/] plugin or
extension of some sort

	option to change which Pygments [http://pygments.org/] style is used

	dark/light background option?

cuv diff

[image: showing "cuv diff" colouring]
You can pipe a git diff to this and see a colorized version of the
diff in your console. I am using a library called unidiff [https://github.com/matiasb/python-unidiff] to read
the actual diff, which so far works quite nicely. That said, I’ve only
tried against the output of Git, like so:

git diff | cuv diff | less

TODO:

	colors are unsatisfying, since for added lines they’re pretty much
the same as Git’s colored output

	maybe make it look more like the “real” underlying diff?
(e.g. re-create the @@ and so forth things)

	does it work with merge commits?

cuv spark

[image: spark-line coverage of txtorcon]
This shows a “spark-line” sort of thing in the console. It’s not very
useful for big projects (e.g. Twisted), but gives a very quick
overview of the coverage in a small amount of space. Using the same
unicode characters as cuv graph, this represents each file as a
single character, and its percentage coverage is graphed (so you only
get granularity down to about 12.5%).

Index

 _static/file.png

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

_images/cuvner-graph-txtorcon.png
(venv) ~/src/txtorcon$ cuv graph

filename percent missing
__init__.py 100
_metadata.py 100
addrmap.py 100
circuit.py 94 (-12)
controller.py 100
endpoints.py 99 (-2)
interface.py 100
log.py 100
router.py 100
socks.py 100
spaghetti.py 100
stream.py 100
torconfig.py 100
torcontrolprotocol.py 100
torinfo.py 100
torstate.py 99 (-2)
util.py 98 (-3)
web.py 100

From 18 files: 3443 total lines, 19 missing

_images/cuvner-spark-txtorcon.png
(venv) ~/src/txtorcon$ cuv spark

(venv) ~/src/txtorcon$ I

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_images/cuvner-next-txtorcon.png
(venv)i~/src/txtorcon$ cuv next -—ignore circuit.py
i

def progress(xargs):

config = get_global_tor(
reactor,
control_port=control_port,
progress_updates=progress

)

config is a Deferred here, but endpoint resolves it in
the listen() call

r = TCPHiddenServiceEndpoint(
reactor, config, public_port,
hidden_service_dir=hidden_service_dir,
local_port=local_port,
stealth_auth=stealth_auth,

)

progress.target = r._tor_progress_update
return r

nav.xhtml

 Table of Contents

 		cuv'ner

 		Cuv'ner

 		Background + Terminology

 		Other Neat Visualizations

 		Notes on Tox

 		Pro Tip(tm)

 		Console Visualizations

 		cuv graph

 		cuv lessopen

 		cuv diff

 		cuv spark

_static/up.png

_images/cuvner-lessopen-twisted.png
A X509 certificate request.

def Ioad(class, requestbata, requestFormat=crypto.FILETYPE_ASNl):
req = crypto.load_certificate_request(requesthrmat,
dn = DistinguishedName()

dn._copyFrom(req.get_subject())
if not req.verify(req.get_pubkey()):

requestData)

return Class(req)
load = classmethod(1oad)

_images/cuvner-diff-txtorcon.png
(venv) ~/src/txtorcon$ git diff | cuv diff -

b/txtorcon/torcontrolprotocol.py

COOKIE authentication turned on. Tor's default is COOKIE.

+ if False:

self.password_function = password_function
mIf set, a callable to query for a password to use for
authentication to Tor (default is to use COOKIE, however). May

(venv) ~/src/txtorcon$ I

